Proteine sind in allen Teilen eines Lebewesens enthalten. Allerdings sind Proteine, zumindest teilweise, in den einzelnen Organen strukturell verschieden. Man kann die Proteine grob einteilen in solche, die als Biokatalysatoren wirken, also Enzyme sind, und solche, die für die Struktur eines Organismus wichtig sind. Z. B. bauen sie bestimmte Gewebe auf, sind Bestandteile von Blutgefäßen, der Haut oder ganz allgemein auch von Zellmembranen. Tierische Organismen verfügen über keine eigentlichen Reserveproteine. Letztere sind in den Samen der Pflanzen enthalten. Ihre physiologische Aufgabe ist es, eine Stickstoffreserve im ruhenden Samen zu bilden, die dann bei der Keimung zur Synthese metabolisch notwendiger Proteine, z. B. Enzyme, herangezogen werden kann. Die Reserveproteine der Pflanzen stellen wichtige Lebensmittel in der menschlichen und tierischen Ernährung dar (z. B. die Getreideproteine). Der Mensch und die Tiere können keine speziellen Reserveproteine aufbauen. Sie können nur den Proteingehalt insgesamt erhöhen, wobei diese Erhöhung nicht auf alle Organe gleichmäßig verteilt ist. Erhöhte Proteinzufuhr äußert sich bei Mensch und Tier vor allem in einem verstärkten Muskelansatz, umgekehrt sind es auch die Muskeln, die bei Proteinmangel relativ schnell abgebaut werden. Auch die verschiedensten Enzyme, aber auch Blutproteine, werden in höheren Konzentrationen gebildet.
Wie oben erwähnt, sind Enzyme Katalysatoren für die in biologischen Systemen ablaufenden chemischen Reaktionen. Ohne Katalyse würden diese Reaktionen bei den in den Organismen vorherrschenden Temperaturen für die physiologischen Bedürfnisse zu langsam ablaufen. Enzyme sind daher für den Betrieb des Organismus unbedingt erforderlich. Die enzymatische Katalyse kann die Geschwindigkeit der im Organismus ablaufenden Reaktionen bis zu etwa 22 Zehnerpotenzen steigern. Die durchschnittliche Erhöhung der Reaktionsgeschwindigkeit liegt bei etwa 8 Zehnerpotenzen. Alle Enzyme sind grundsätzlich Proteine. Sie können aber weitere, für die Katalyse der speziellen Reaktion notwendige Gruppen enthalten, die so genannten Coenzyme. Coenzyme sind z. B. die Hämgruppe – es gibt eine große Anzahl von enzymatisch wirksamen Hämproteinen – oder Vertreter der Gruppe der B-Vitamine, die als Coenzyme in allen Organismen in Verwendung sind. Auch Metallionen, wie z. B. Kupfer, Eisen, Mangan oder Nickel, fungieren auf dazu geeigneten Proteinen als Coenzyme. Das Coenzym ist für die Durchführung der chemischen Reaktion notwendig, das Apoenzym (der Proteinrest) schafft dafür die optimalen Reaktionsbedingungen. Coenzym und Apoenzym müssen nicht durch kovalente Bindungen miteinander verbunden sein. Viele Enzyme (Holoenzyme) können durch geeignete chemische Reaktionen in Coenzym und Apoenzym gespalten werden. Die enzymatische Aktivität eines Moleküls wird durch die Endsilbe „-ase“ angezeigt. Ein eiweißspaltendes Enzym wird daher als Protease bezeichnet, ein stärkespaltendes als Amylase (lat. amylum = Stärke). Früher glaubte man, dass in den Organismen nur jeweils eine Enzymart mit einer ganz bestimmten chemischen Struktur für die Katalyse einer speziellen chemischen Reaktion verantwortlich ist. Heute weiß man, dass in ein und demselben Organismus Enzyme qualitativ gleicher Aktivität, aber verschiedener chemischer Struktur vorkommen können. So hat beispielsweise die Speichelamylase im menschlichen Organismus eine andere chemische Struktur als die Amylase, die von der Bauchspeicheldrüse (Pankreas) sezerniert wird. Intrazelluläre Enzyme haben oft eine andere Struktur als extrazelluläre Enzyme gleicher Funktion. Dies kann in der Praxis der Lebensmittelanalyse zur Unterscheidung von Lebensmitteln mit intakten Zellen und Lebensmitteln mit weitgehend zerstörten Zellen (z. B. tiefgefrorene und wieder aufgetaute Lebensmittel) herangezogen werden. Enzyme mit qualitativ gleicher Funktion, aber unterschiedlicher chemischer Struktur werden als Isoenzyme oder auch Isozyme bezeichnet.
Die Enzyme werden, entsprechend ihrer Hauptaktivität, in sechs Gruppen eingeteilt:
Gruppe 1 Oxidoreduktasen Katalysieren Elektronentransfer
Gruppe 2 Transferasen Katalysieren die Übertragung von Molekülgruppierungen (nicht von Wasserstoff!)
Gruppe 3 Hydrolasen Katalysieren hydrolytische Spaltungen
Gruppe 4 Lyasen Übertragen auf oder entfernen Gruppen von Doppelbindungen
Gruppe 5 Isomerasen Katalysieren die intramolekulare Umwandlung isomerer Verbindungen
Gruppe 6 Ligasen Katalysieren die Kondensation zweier Moleküle unter Spaltung von Adenosintriphosphat – ATP
Eine andere Einteilung wäre jene nach der Anzahl der Substrate, die ein Enzym für die von ihm katalysierte Reaktion benötigt. Man unterscheidet solche, die zwei Substrate umsetzen: Dazu gehören vor allem die Oxidoreduktasen (transferieren Elektronen), dann die Transferasen und die Ligasen. Alle anderen Enzyme kommen mit einem Substrat aus. Enzyme sind wie die meisten Proteine bei Erwärmung auf höhere Temperaturen (beginnend bei etwa 40 °C) nicht beständig – sie verlieren ihre katalytische Aktivität. Über diese so genannte Denaturierung siehe Kapitel 4. Eine Ausnahme von dieser Thermolabilität der Enzyme bilden diejenigen, die in hitzestabilen Organismen vorkommen, z. B. thermophile Bakterien, die in heißen Quellen leben. Die aus diesen Organismen isolierbaren, thermisch stabilen Enzyme finden heute zunehmend Anwendung in der Lebensmitteltechnologie. Die Lokalisation der Enzyme in Zellorganellen und auch im Gewebe kann histochemisch mit Hilfe von farbgebenden Substraten erfolgen. Farbgebende Substrate sind solche, bei denen nach der enzymatischen Reaktion entweder Farbstoffe direkt freigesetzt werden oder aber Moleküle entstehen, die mit geeigneten Reagenzien Farbstoffe bilden können. Beispielsweise geben Ester von phenolischen Verbindungen nach der Spaltung durch Esterasen freie Phenole, die wieder nach Zugabe von Diazoniumsalzen Azofarbstoffe bilden. Der Farbstoff entsteht an der Stelle, an der das Enzym lokalisiert ist. Strukturproteine sind bei Tieren vor allem die verschiedenen Bindegewebsproteine, wie z. B. ollagen und Elastin, die in der Haut, der Lunge, den Sehnen, den Blutgefäßen, aber auch in der glatten und quergestreiften Muskulatur vorkommen. Auch das Keratin in Haaren und Nägeln ist ein typisches tierisches Strukturprotein. Strukturproteine quellen zwar in wässrigen Systemen, sind aber nicht löslich. Muskelproteine haben eine Zwischenstellung zwischen reinem Strukturprotein und enzymatisch aktiven Proteinen, da die Muskelproteine auch über enzymatische Aktivität verfügen, die für die Muskelbewegung wichtig ist. Bei Pflanzen entspricht das Extensin, das am Aufbau der primären pflanzlichen Zellwand beteiligt ist, etwa dem tierischen Collagen. Pflanzen können, wie oben erwähnt, große Mengen an Proteinen vor allem in Samen speichern. Strukturproteine und auch Speicherproteine zeigen eine relativ geringe Varianz an Aminosäuren. Einige Aminosäuren kommen in diesen Proteinen in sehr hoher Konzentration vor: z. B. Glycin im Collagen etwa 30 %, Glutamin im Weizenklebereiweiß etwa 35 %. Solche Hauptmengen an Aminosäuren sind in enzymatisch aktiven Proteinen nie aufgefunden worden. Auf der anderen Seite sind einige metabolisch wichtige Aminosäuren in Strukturproteinen nur in sehr geringer Konzentration enthalten. So kann z. B. Collagen als alleinige Proteinquelle keine ausreichende Eiweißversorgung für den Menschen gewährleisten. Enzymatisch aktive Proteine unterscheiden sich von Struktur- und Speicherproteinen in ihrem Aufbau aus den Bausteinen, den Aminosäuren, vor allem durch quantitative Unterschiede in ihrer Zusammensetzung. Während in den Speicher- und Strukturproteinen hohe Konzentrationen einzelner Aminosäuren vorkommen und die Anzahl der das Protein aufbauenden Aminosäurearten überhaupt eingeschränkt ist, findet man in enzymatisch aktiven Proteinen das Umgekehrte: eine große Anzahl verschiedener Aminosäuren, aber keine Hauptmengen.